Babar - Netflix

The adventures of a beloved elephant king and his family come to life in this delightful animated series based on the children's books by Jean and Laurent de Brunhoff. Living in a huge mansion with his whole family of elephants, Babar has entertained over millions of toddlers, and even older children nation-wide.

Babar - Netflix

Type: Animation

Languages: English

Status: Ended

Runtime: 30 minutes

Premier: 1989-01-03

Babar - BaBar experiment - Netflix

The BaBar experiment, or simply BaBar, is an international collaboration of more than 500 physicists and engineers studying the subatomic world at energies of approximately ten times the rest mass of a proton (~10 GeV). Its design was motivated by the investigation of Charge Parity violation. BaBar is located at the SLAC National Accelerator Laboratory, which is operated by Stanford University for the Department of Energy in California.

Babar - Notable events - Netflix

On 9 October 2005, BaBar recorded a record luminosity just over 1 × 1034 cm−2s−1 delivered by the PEP-II positron-electron collider. This represents 330% of the luminosity that PEP-II was designed to deliver, and was produced along with a world record for stored current in an electron storage ring at 1,732 mA, paired with a record 2,940 mA of positrons. “For the BaBar experiment, higher luminosity means generating more collisions per second, which translates into more accurate results and the ability to find physics effects they otherwise couldn’t see.” In 2008, BaBar physicists detected the lowest energy particle in the bottomonium quark family. Spokesman Hassan Jawahery said: “These results were highly sought after for over 30 years and will have an important impact on our understanding of the strong interactions.” In May 2012 BaBar reported that their recently analyzed data may suggest possible flaws in the Standard Model of particle physics. These data show that a particular type of particle decay called “B to D-star-tau-nu” happens more often than the Standard Model says it should. In this type of decay, a particle called the B-bar meson decays into a D or Dstar meson, an antineutrino and a tau-lepton. While the level of certainty of the excess (3.4 sigma) is not enough to claim a break from the Standard Model, the results are a potential sign of something amiss and are likely to impact existing theories, including those attempting to deduce the properties of Higgs bosons. In 2015 results from LHCb and the Belle experiment strengthen the evidence (to 3.9 sigma) of possible physics beyond the Standard Model in these decay processes, but still not at the gold standard 5 sigma level of significance.

Babar - References - Netflix