15 to 1 - Netflix

Game show hosted by William G Stewart

Type: Game Show

Languages: None

Status: Ended

Runtime: 30 minutes

Premier: None

15 to 1 - ALOX15 - Netflix

ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These studies defined a direct link between ALOX15 gene activity and an established tumor-suppressor gene located in close chromosomal proximity. Kelavkar and Badr (1999) referred to this as evidence that 15-lipoxygenase is a mutator gene. ▼ Mapping By PCR analysis of a human-hamster somatic hybrid DNA panel, Funk et al. (1992) demonstrated that genes for 12-lipoxygenase and 15-lipoxygenase are located on human chromosome 17, whereas the most unrelated lipoxygenase (5-lipoxygenase) was mapped to chromosome 10. Kelavkar and Badr (1999) stated that the ALOX15 gene maps to 17p13.3 in close proximity to the tumor-suppressor gene TP53 (191170). In humans, it is encoded by the ALOX15 gene located on chromosome 17p13.3. This 11 kilobase pair gene consists of 14 exons and 13 introns coding for a 75 kiloDalton protein composed of 662 amino acids. 15-LO is to be distinguished from another human 15-lipoxygenase enzyme, ALOX15B (also termed 15-lipoxygenase-2). Orthologs of ALOX15, termed Alox15, are widely distributed in animal and plant species but commonly have different enzyme activities and make somewhat different products than ALOX15.

15 to 1 - Linoleic acid - Netflix

Human 15-LOX-1 prefers linoleic acid over arachidonic acid as its primary substrate, oxygenating it at carbon 13 to form 13(S)-hydroperoxy-9Z,11E-octadecaenoic acid (13-HpODE or 13(S)-HpODE) which may then be reduce to the corresponding hydroxy derivative, 13(S)-HODE or 13-HODE (see 13-Hydroxyoctadecadienoic acid). In addition to 13(S)-HpODE, non-human 15-LOX1 orthologs such as mouse 12/15-LOX and soybean 15-LOX metabolize linoleic acid to 9-hydroperoxy-10E, 12Z-octadecaenoic acid (9-HpODE or 9(S)-HpODE), which is rapidly converted to 9(S)-HODE (9-HODE) (see 9-Hydroxyoctadecadienoic acid)). 13(S)-HODE acts through Peroxisome proliferator-activated receptors and the TRPV1 and human GPR132 receptors to stimulate a variety of responses related to monocyte maturation, lipid metabolism, and neuron activation (see 13-Hydroxyoctadecadienoic acid##Activities of 13-HODEs; 9(S)-HODE is a marker for diseases involving oxidative stress and may contribute to this disease as well as to pain perception and atherosclerosis (see 9-Hydroxyoctadecadienoic acid##Biological and clinical relevancy of 9-HODEs). The two HODEs can be further metabolized to their ketones, 13-oxo-9Z,11E-octadecaenoic acid and 9-oxo-10E, 12Z-octadecaenoic acid; these ketones have been implicated as biomarkers for and possible contributors to the inflammatory component of atherosclerosis, Alzheimer's disease, Steatohepatitis, and other pathological conditions.

15 to 1 - References - Netflix